Self-induced transparency solitary waves in a doped nonlinear photonic band gap material

نویسندگان

  • Neşet Aközbek
  • Sajeev John
چکیده

We derive the properties of self-induced transparency ~SIT! solitary waves in a one-dimensional periodic structure doped uniformly with resonance two-level atoms. In our model, the electromagnetic field is treated classically and the dopant atoms are described quantum mechanically. The resulting solitary waves take the form of ultrashort ~picosecond! laser pulses which propagate near the band edge of the nonlinear photonic band gap ~PBG! material doped with rare-earth atoms such as erbium. Solitary wave formation involves the combined effects of group velocity dispersion ~GVD!, nonresonant Kerr nonlinearity, and resonant interaction with dopant atoms. We derive the general Maxwell-Bloch equations for a nonlinear PBG system and then demonstrate the existence of elementary solitary wave solutions for frequencies far outside the gap where GVD effects are negligible and for frequencies near the photonic band edge where GVD effects are crucial. We find two distinct new types of propagating SIT solitary wave pulses. Far from Bragg resonance, we recapture the usual McCall-Hahn soliton with hyperbolic secant profile when the nonlinear Kerr coefficient x 50. However, when the host nonresonant Kerr coefficient is nonzero, we obtain the first new type of soliton. In this case, the optical soliton envelope function deviates from the hyperbolic secant profile and pulse propagation requires nontrivial phase modulation ~chirping!. We derive the dependence of the solitary wave structure on the Kerr coefficient x , the resonance impurity atom density, and the detuning of the average laser frequency from the atomic transition. When the laser frequency and the atomic transition frequencies are near the photonic band edge we obtain the second type of soliton. To illustrate the second type of soliton we consider two special cases. In the first case, GVD facilitates the propagation of an unchirped SIT-gap soliton moving at a velocity fixed by the material’s parameters. The soliton structure changes dramatically as the laser frequency is tuned through the atomic resonance. In the second illustrative case we set the Kerr coefficient x 50. In this case, the solution is a chirped pulse which arises from the balance between GVD and the resonance interaction with the dopant atoms. Finally, we show that under certain circumstances, these solitary wave solutions may persist even in the presence of ~subpicosecond! dipolar dephasing of the dopant atoms and absorption losses of the host PBG material, provided that the system is incoherently pumped. These results may be relevant to the application of PBG materials as optical devices in fiber-optic networks. @S1063-651X~98!08409-8#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Bloch waves in resonantly doped photonic crystals.

We demonstrate the existence of self-consistent Bloch modes in resonant nonlinear photonic crystals with a complex, intensity-dependent, and frequency-dependent dielectric function. Such a dielectric response may arise by "doping" the photonic crystal with resonant quantum dots, atomic impurities, or other two-level light emitters. These exact solutions of the nonlinear electromagnetic wave equ...

متن کامل

Optical solitary waves in two- and three-dimensional nonlinear photonic band-gap structures

We present a detailed analysis of finite energy solitary waves in twoand three-dimensional nonlinear periodic structures exhibiting a complete photonic band gap. Solitary waves in photonic crystals with a twodimensional ~2D! square and triangular symmetry group as well as a 3D fcc symmetry group are described in terms of an effective nonlinear Dirac equation derived using the slowly varying env...

متن کامل

Analytical Investigation of TM Surface Waves in 1D Photonic Crystals Capped by a Self-Focusing Left-Handed Slab

In this paper, the localized TM surface waves of a nonlinear self-focusingleft-handed slab sandwiched between a uniform medium and a one-dimensionalphotonic crystal (1D PC) is analytically investigated. Our method is based on the firstintegral of the nonlinear Maxwell's equations. For the TM surface waves, the presenceof two electric field components makes the analysis difficult. Therefore, we ...

متن کامل

تأثیر گاف نوار فوتونی بر انتشار پالس بازتابی از بره آلاییده شده توسط اتم‌های دو ترازی و سه ترازی

  In this paper the effect of photonic band gap on the group velocity of reflected pulse from a dielectric slab doped with two-level or three-level atoms has been investigated. It is assumed that the slab is sandwiched between a uniform medium (like vacuum) and a one-dimensional photonic crystal. It is shown that the reflected pulse from the slab doped with two-level (three-level) atoms will be...

متن کامل

The effect of material nonlinearity on the band gap for TE and TM modes in square and triangular lattices

In this article, by using the method of finite difference time domain (FDTD) and PML boundary conditions, we have studied the photonic band gaps for TE and TM modes in square and triangular lattices consisting of air holes in dielectric medium and compared the results. In addition, the effect of nonlinearity of the photonic crystal background on the photonic band gaps and comparison with the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998